skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Waugh, Darryn W"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Examination of historical simulations from CMIP6 models shows substantial pre‐industrial to present‐day changes in ocean heat (ΔH), salinity (ΔS), oxygen (ΔO2), dissolved inorganic carbon (ΔDIC), chlorofluorocarbon‐12 (ΔCFC12), and sulfur hexafluoride (ΔSF6). The spatial structure of the changes and the consistency among models differ among tracers: ΔDIC, ΔCFC12, and ΔSF6all are largest near the surface, are positive throughout the thermocline with weak changes below, and there is good agreement among the models. In contrast, the largest ΔH, ΔS, and ΔO2are not necessarily at the surface, their sign varies within the thermocline, and there are large differences among models. These differences between the two groups of tracers are linked to climate‐driven changes in the ocean transport, with this tracer “redistribution” playing a significant role in changes in ΔH, ΔS, and ΔO2but not the other tracers. The spatial structure, and differences between models, of changes in age tracers are consistent with ΔH, ΔS, and ΔO2, supporting the hypothesis that redistribution plays a major role for these tracers. Further, the impact of the vertical displacement of isopycnals (heave) plays a major role in the differing impact of redistribution between the two groups, with this process causing insignificant changes to ΔDIC, ΔCFC12, and ΔSF6due to their weak spatial gradients. A similar multi‐tracer analysis of observations could provide insights into the relative role of the addition and redistribution of tracers in the ocean. 
    more » « less
  2. Abstract Stratospheric ozone, and its response to anthropogenic forcings, provides an important pathway for the coupling between atmospheric composition and climate. In addition to stratospheric ozone’s radiative impacts, recent studies have shown that changes in the ozone layer due to 4xCO2have a considerable impact on the Northern Hemisphere (NH) tropospheric circulation, inducing an equatorward shift of the North Atlantic jet during boreal winter. Using simulations produced with the NASA Goddard Institute for Space Studies (GISS) high-top climate model (E2.2), we show that this equatorward shift of the Atlantic jet can induce a more rapid weakening of the Atlantic meridional overturning circulation (AMOC). The weaker AMOC, in turn, results in an eastward acceleration and poleward shift of the Atlantic and Pacific jets, respectively, on longer time scales. As such, coupled feedbacks from both stratospheric ozone and the AMOC result in a two-time-scale response of the NH midlatitude jet to abrupt 4xCO2forcing: a “fast” response (5–20 years) during which it shifts equatorward and a “total” response (∼100–150 years) during which the jet accelerates and shifts poleward. The latter is driven by a weakening of the AMOC that develops in response to weaker surface zonal winds that result in reduced heat fluxes out of the subpolar gyre and reduced North Atlantic Deep Water formation. Our results suggest that stratospheric ozone changes in the lower stratosphere can have a surprisingly powerful effect on the AMOC, independent of other aspects of climate change. 
    more » « less
  3. Abstract. Recent work has shown that variability in the subtropical jet's (STJ) latitude, ϕSTJ, is not coupled to that of the Hadley cell (HC) edge, ϕHC, but the robustness of this disconnect has not been examined in detail. Here, we use meteorological reanalysis products, comprehensive climate models, and an idealized atmospheric model to determine the necessary processes for a disconnect between ϕHC and ϕSTJ in the Northern Hemisphere's December–January–February season. We find that a decoupling can occur in a dry general circulation model, indicating that large-scale dynamical processes are sufficient to reproduce the metrics' relationship. It is therefore not reliant on explicit variability in the zonal structure, convection, or radiation. Rather, the disconnect requires a sufficiently realistic climatological basic state. Further, we confirm that the robust disconnect between ϕSTJ and ϕHC across the model hierarchy reveals their differing sensitivities to midlatitude eddy momentum fluxes; ϕHC is consistently coupled to the latitude of maximum eddy momentum flux, but ϕSTJ is not. 
    more » « less
  4. Abstract Monitoring and understanding the variability of heat within cities is important for urban planning and public health, and the number of studies measuring intraurban temperature variability is growing. Recognizing that the physiological effects of heat depend on humidity as well as temperature, measurement campaigns have included measurements of relative humidity alongside temperature. However, the role the spatial structure in humidity, independent from temperature, plays in intraurban heat variability is unknown. Here we use summer temperature and humidity from networks of stationary sensors in multiple cities in the United States to show spatial variations in the absolute humidity within these cities are weak. This variability in absolute humidity plays an insignificant role in the spatial variability of the heat index and humidity index (humidex), and the spatial variability of the heat metrics is dominated by temperature variability. Thus, results from previous studies that considered only intraurban variability in temperature will carry over to intraurban heat variability. Also, this suggests increases in humidity from green infrastructure interventions designed to reduce temperature will be minimal. In addition, a network of sensors that only measures temperature is sufficient to quantify the spatial variability of heat across these cities when combined with humidity measured at a single location, allowing for lower-cost heat monitoring networks. Significance StatementMonitoring the variability of heat within cities is important for urban planning and public health. While the physiological effects of heat depend on temperature and humidity, it is shown that there are only weak spatial variations in the absolute humidity within nine U.S. cities, and the spatial variability of heat metrics is dominated by temperature variability. This suggests increases in humidity will be minimal resulting from green infrastructure interventions designed to reduce temperature. It also means a network of sensors that only measure temperature is sufficient to quantify the spatial variability of heat across these cities when combined with humidity measured at a single location. 
    more » « less
  5. Abstract There are a myriad of ways atmospheric circulation responds to increased CO 2 . In the troposphere, the region of the tropical upwelling narrows, the Hadley Cells expand, and the upper level subtropical zonal winds that comprise the subtropical jet strengthen. In the stratosphere, the tropical upwelling narrows and strengthens, enhancing the Brewer-Dobson Circulation. Despite the robustness of these projections, dynamical coupling between the features remains unclear. In this study, we analyze output from the NASA Goddard Institute for Space Studies (GISS) ModelE coupled climate model to examine any connection between the upper tropospheric and lower stratospheric circulation by considering the features’ seasonality, hemispheric asymmetry, scaling, and transient response to a broad range of CO 2 forcings. We find that a narrowing and strengthening of upper tropospheric upwelling occurs with a strengthening of the subtropical jet. There is also a narrowing and strengthening of lower stratospheric upwelling that is related to an equatorward shift in critical latitude for wave breaking and the associated strengthening of the subtropical lower stratosphere’s zonal winds. However, the stratospheric responses display different seasonal, hemispheric, and transient patterns than those in the troposphere, indicating independent circulation changes between the two domains. 
    more » « less
  6. Abstract Polar vortices are common planetary-scale flows that encircle the pole in the middle or high latitudes and are observed in most of the solar system’s planetary atmospheres. The polar vortices on Earth, Mars, and Titan are dynamically related to the mean meridional circulation and exhibit a significant seasonal cycle. However, the polar vortex’s characteristics vary between the three planets. To understand the mechanisms that influence the polar vortex’s dynamics and dependence on planetary parameters, we use an idealized general circulation model with a seasonal cycle in which we vary the obliquity, rotation rate, and orbital period. We find that there are distinct regimes for the polar vortex seasonal cycle across the parameter space. Some regimes have similarities to the observed polar vortices, including a weakening of the polar vortex during midwinter at slow rotation rates, similar to Titan’s polar vortex. Other regimes found within the parameter space have no counterpart in the solar system. In addition, we show that for a significant fraction of the parameter space, the vortex’s potential vorticity latitudinal structure is annular, similar to the observed structure of the polar vortices on Mars and Titan. We also find a suppression of storm activity during midwinter that resembles the suppression observed on Mars and Earth, which occurs in simulations where the jet velocity is particularly strong. This wide variety of polar vortex dynamical regimes that shares similarities with observed polar vortices, suggests that among exoplanets there can be a wide variability of polar vortices. 
    more » « less
  7. Abstract Zonal jets are common in planetary atmospheres. Their character, structure, and seasonal variability depend on the planetary parameters. During solstice on Earth and Mars, there is a strong westerly jet in the winter hemisphere and weak, low-level westerlies in the ascending regions of the Hadley cell in the summer hemisphere. This summer jet has been less explored in a broad planetary context, both due to the dominance of the winter jet and since the balances controlling it are more complex, and understanding them requires exploring a broader parameter regime. To better understand the jet characteristics on terrestrial planets and the transition between winter- and summer-dominated jet regimes, we explore the jet’s dependence on rotation rate and obliquity. Across a significant portion of the parameter space, the dominant jet is in the winter hemisphere, and the summer jet is weaker and restricted to the boundary layer. However, we show that for slow rotation rates and high obliquities, the strongest jet is in the summer rather than the winter hemisphere. Analysis of the summer jet’s momentum balance reveals that the balance is not simply cyclostrophic and that both boundary layer drag and vertical advection are essential. At high obliquities and slow rotation rates, the cross-equatorial winter cell is wide and strong. The returning poleward flow in the summer hemisphere is balanced by low-level westerlies through an Ekman balance and momentum is advected upward close to the ascending branch, resulting in a midtroposphere summer jet. 
    more » « less
  8. null (Ed.)
  9. Over the past 15 years, numerous studies have suggested that the sinking branches of Earth’s Hadley circulation and the associated subtropical dry zones have shifted poleward over the late 20 th century and early 21 st century. Early estimates of this tropical widening from satellite observations and reanalyses varied from 0.25° to 3° latitude per decade, while estimates from global climate models show widening at the lower end of the observed range. In 2016, two working groups, the US Climate Variability and Predictability (CLIVAR) working group on the Changing Width of the Tropical Belt and the International Space Science Institute (ISSI) Tropical Width Diagnostics Intercomparison Project, were formed to synthesize current understanding of the magnitude, causes, and impacts of the recent tropical widening evident in observations. These working groups concluded that the large rates of observed tropical widening noted by earlier studies resulted from their use of metrics that poorly capture changes in the Hadley circulation, or from the use of reanalyses that contained spurious trends. Accounting for these issues reduces the range of observed expansion rates to 0.25°–0.5° latitude decade -1 —within the range from model simulations. Models indicate that most of the recent Northern Hemisphere tropical widening is consistent with natural variability, whereas increasing greenhouse gases and decreasing stratospheric ozone likely played an important role in Southern Hemisphere widening. Whatever the cause or rate of expansion, understanding the regional impacts of tropical widening requires additional work, as different forcings can produce different regional patterns of widening. 
    more » « less
  10. null (Ed.)
    Abstract Previous studies have documented a poleward shift in the subsiding branches of Earth’s Hadley circulation since 1979 but have disagreed on the causes of these observed changes and the ability of global climate models to capture them. This synthesis paper reexamines a number of contradictory claims in the past literature and finds that the tropical expansion indicated by modern reanalyses is within the bounds of models’ historical simulations for the period 1979–2005. Earlier conclusions that models were underestimating the observed trends relied on defining the Hadley circulation using the mass streamfunction from older reanalyses. The recent observed tropical expansion has similar magnitudes in the annual mean in the Northern Hemisphere (NH) and Southern Hemisphere (SH), but models suggest that the factors driving the expansion differ between the hemispheres. In the SH, increasing greenhouse gases (GHGs) and stratospheric ozone depletion contributed to tropical expansion over the late twentieth century, and if GHGs continue increasing, the SH tropical edge is projected to shift further poleward over the twenty-first century, even as stratospheric ozone concentrations recover. In the NH, the contribution of GHGs to tropical expansion is much smaller and will remain difficult to detect in a background of large natural variability, even by the end of the twenty-first century. To explain similar recent tropical expansion rates in the two hemispheres, natural variability must be taken into account. Recent coupled atmosphere–ocean variability, including the Pacific decadal oscillation, has contributed to tropical expansion. However, in models forced with observed sea surface temperatures, tropical expansion rates still vary widely because of internal atmospheric variability. 
    more » « less